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Abstract. The bipolaronic system model of an infinite quantum well, in which two electrons
or holes are weakly or intermediately coupled with both longitudinal optical (LO) and surface
optical (SO) phonons, may be applied to layer-type high-Tc superconductivity. A double unitary
transformation of the Hamiltonian is carried out. The numerical results show that when the
thickness of the polar slab increases the LO phonon contribution to the binding energy increases
but that from the SO phonon decreases. On taking the Coulombic repulsion into account, the
binding energy of the bipolaron is found to depend on the distance between the two electrons or
holes. It is shown that the potential energy of the effective interaction of the two holes that form
the stable bipolaron in a relatively thin polar slab of YBCO has a distinct equilibrium position
at its minimum. The magnitude of the binding energy of these two holes becomes larger as the
bipolaron size, taken as the equilibrium distance between the holes, becomes smaller.

1. Introduction

With the discovery of the layered oxide cuprate superconductivity [1, 2], it has probably
become impossible to explain such a high critical temperature,Tc, within the classical (BCS)
theory of superconductivity [3]. A number of novel mechanisms have been developed. In
particular, there has been revived interest in the notion of bipolaronic superconductivity
[4–9]. The basic idea is that a charged boson-like bipolaron will be formed when the
carriers are assumed to bind in pairs within the potential wells produced by the atomic
displacements that stabilize the carriers’ presence. The bipolaron in a bound state is a
real-space pairing of electrons or holes [10], which is different from thek-space pairing
characteristic of a Cooper pair. The bipolaron carries two negative or two positive charges,
depending on the intrinsic properties of the polar crystals.

Adamowski [11] has studied the formation of the Fröhlich bipolaron by calculating
the binding energy of a bipolaron as a function of the Fröhlich coupling constantα and
the dielectric constant. In [12], Bassaniet al calculated the energies of bipolaron states
variationally in three- and two-dimensional systems, treating the electron–phonon interaction
in the Fr̈ohlich approximation. However, their work was focused on the interaction of
electrons or holes merely with the bulk longitudinal optical (LO) phonon.

One of us (Gu [13]) has investigated the exciton–phonon system in the two-dimensional
case, where the electrons and holes are confined spatially in the same material. By
considering the weak and intermediate coupling of electrons and holes with both bulk
longitudinal optical phonons and surface optical phonons, the binding energy of the exciton
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and the effect of the exciton on the optical phonon have been studied in great detail [13, 14].
In [15], the exciton–phonon system of the type-II heterostructural quantum well has also
been investigated. Since the discovery of high-temperature superconductors in 1986, the
bipolaronic theory of high-temperature superconductivity has stimulated a great deal of
interest as regards explaining the tremendously high critical temperature of these materials;
see [16]. More recently, some researchers have investigated the stability of large bipolarons
in three dimensions [17] and in both two and three dimensions [18] for a polar crystal. It
was pointed out that the stability region for bipolaron formation is much larger in 2D as
compared with 3D [18]. After a careful analysis of the results given in existing references,
we note that the Hamiltonian of a bipolaronic system, of either electron type or hole type
in the polar crystal, in some sense has a similar form to that of the excitonic system. So,
in this paper, we would like to present a formalism for the binding energy of a bipolaronic
system, which may be related to the behaviour of a high-Tc superconductor.

In this paper, our task is to consider the interactions of the electrons or holes not only
with the bulk longitudinal optical (LO) phonons but also with the surface optical (SO)
phonons in the low-temperature limit (at zero temperature) and to investigate the behaviour
of the electron- or hole-type bipolaron system in the polar slab by using a double unitary
transformation similar to that used in [14, 19], which is particularly applicable for large
polarons. We also study how the binding energy of the two electrons or holes in the large
bipolaron depends on the distance between them. We consider that the interaction potential
VI (z1, z2, ρ) induced by the interaction of the bipolaron is divided into two parts: one,
V 0

I (z1)(V
0
I (z2)), is similar to that given by equation (13) in [14], which depends onz1 (z2);

the other,V ′
I (z1, z2, ρ), is the attractive Cooper pair interaction which depends not only

on z1 (z2) but also on the relative position of thexy projection. On the other hand, the
repulsive Coulombic potential is of paramount importance; it reduces the binding energy of
the bipolaron when the two electrons or holes are very close. It is less favourable to the
formation of the bipolaron.

Note that the results deduced in this paper will be applicable for weakly and
intermediately coupled bipolarons in layered polar slabs.

2. Theory

Consider a slab of polar crystal with thicknessd, which is surrounded by a vacuum for
[z] > d/2, and for which the quantum well profiles for the electron- and hole-type bipolaron
are as shown in figure 1. We make the generalization that the Hamiltonian of the (either
electron- or hole-type) bipolaronic system in the quantum well along thez-direction can be
expressed as follows:

Ĥbip = p2
1z

2m1
+ p2

2z

2m2
+ P 2

2M
+ p2

2µ
+ e2

ε∞[ρ2 + (z1 − z2)2]1/2
+ V1(z1) + V2(z2)

+
∑

k,m,p

h̄ωLOâ+
k,m,pâk,m,p +

∑
q,p

h̄ωSOpb̂+
q,pb̂q,p

+
∑
k,m

{B∗[Wk,m,+(z1, z2, ρ)â+
k,m,+ + Wk,m,−(z1, z2, ρ)â+

k,m,−]e−ik·R + HC}

+
∑

q

[
sinh(qd)

q

]1/2

e−qd/2{C∗[Vq,+(z1, z2, ρ)b̂+
q,+

+Vq,−(z1, z2, ρ)b̂+
q,−]e−iq·R + HC} (1)
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Figure 1. Plots of the quantum well potential profiles along thez-axis for the electron-type
bipolaron in the conduction band, and for the hole-type bipolaron in the valence band.

where the infinite quantum wells in which the two electrons or holes trapped are defined as

V1(z1) =
{

0 |z1| 6 d/2

∞ |z1| > d/2
(2)

V2(z2) =
{

0 |z2| 6 d/2

∞ |z2| > d/2.
(3)

In equation (1), except for the Coulombic interaction potential having a different sign, the
Hamiltonian of the bipolaronic system is seen to have a similar form to that of the excitonic
system [14]. In the bipolaronic system, the Coulombic interaction is repulsive, which takes
the positive sign, whereas in the excitonic system, the Coulombic interaction is attractive,
and has a negative sign. Furthermore, the above Hamiltonian has been expressed in the
coordinate frame of the centre of mass, withs1 = m1/M, s2 = m2/M, M = m1 + m2,
µ = m1m2/M. ρ is the difference between the vectors for projection onto thexy-plane
of the two electrons or holes which are bounded in the bipolaron, i.e.ρ1 − ρ2. R is
the vector for projection onto thexy-plane of the spatial vector for the centre of mass, i.e.
R = s1ρ1+s2ρ2. ωLO andωSO are the frequencies of the LO phonons and the SO phonons
respectively, which have the following relationships:

ω2
SO± = ω2

T O

(ε0 + 1) ∓ (ε0 − 1)e−qd

(ε∞ + 1) ∓ (ε∞ − 1)e−qd
(4)

ω2
LO = ω2

T O

ε0

ε∞
. (5)

ωT O is the frequency of the bulk transverse optical phonon.ε0 and ε∞ are the static and
optical dielectric constants of the polar crystal.k andq are the two-dimensional wavevectors
of the LO and SO phonons respectively.m is the quantum number of thez-component of the
LO mode,m = 1, 2, . . . , N . â+

k,m,p (âk,m,p) and b̂+
q,p (b̂q,p) are the creation (annihilation)

operators with parityp = ± for the LO and SO phonons. The other symbols in equation (1)
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are defined as follows [20]:

Wk,m,+(z1, z2, ρ) = cos[mπz1/d]

[k2 + [mπ/d]2]1/2
e−is2k·ρ

+ cos[mπz2/d]

[k2 + [mπ/d]2]1/2
eis1k·ρ m = 1, 3, 5, . . . (6)

Wk,m,−(z1, z2, ρ) = sin[mπz1/d]

[k2 + [mπ/d]2]1/2
e−is2k·ρ

+ sin[mπz2/d]

[k2 + [mπ/d]2]1/2
eis1k·ρ m = 2, 4, 6, . . . (7)

Vq,±(z1, z2, ρ) = G±(q, z1) exp(−is2q · ρ) + G±(q, z2) exp(is1q · ρ). (8)

B∗ = i

[
4πe2

V
h̄ωLO

[
1

ε∞
− 1

ε0

]]1/2

(9)

C∗ = i

[
2πe2

A
h̄ωT O(ε0 − ε∞)

]1/2

(10)

G+(q, z) =


cosh(qz)/ cosh(qd/2)

(ε∞ + 1) − (ε∞ − 1)e−qd

[
(ε∞ + 1) − (ε∞ − 1)e−qd

(ε0 + 1) − (ε0 − 1)e−qd

]1/4

|z| 6 d

2

e−q|z|/e−qd

(ε∞ + 1) − (ε∞ − 1)e−qd

[
(ε∞ + 1) − (ε∞ − 1)e−qd

(ε0 + 1) − (ε0 − 1)e−qd

]1/4

|z| >
d

2

(11)

G−(q, z) =


sinh(qz)/ sinh(qd/2)

(ε∞ + 1) − (ε∞ − 1)e−qd

[
(ε∞ + 1) + (ε∞ − 1)e−q/d

(ε0 + 1) − (ε0 − 1)e−qd

]1/4

|z| 6 d

2

e−q|z|/e−qd/2

(ε∞ + 1) − (ε∞ − 1)e−qd

[
(ε∞ + 1) + (ε∞ − 1)e−qd

(ε0 + 1) − (ε0 − 1)e−qd

]1/4

|z| >
d

2
.

(12)

To solve for the ground-state energy for the bipolaron trapped in the infinite-quantum-
well system, which has the Hamiltonian specified in equation (1), is in fact a difficult task.
In order to obtain a solution, we need first of all to make a transformation to eliminate the
radial vectorR by making use ofÛ1. Secondly, the transformed Hamiltonian needs to be
diagonalized by using thêU2-operator. Both of these unitary transformation operators are
specified below:

Û1 = exp

(
− i

∑
k,m,p

â+
k,m,pâk,m,pk · R − i

∑
q,p

b̂+
q,pb̂q,pq · R

)
(13)

and

Û2 = exp

( ∑
k,m,p

(â+
k,m,pfk,m,p − âk,m,pf ∗

k,m,p) +
∑
q,p

(b̂+
q,pgq,p − b̂q,pg∗

q,p)

)
. (14)

By applying a similar transformation to the Hamiltonian given as equation (1) via the double
unitary transformation operator, we obtain

ˆ̃
Hbip = Û−1

2 Û−1
1 ĤbipÛ1Û2 = Ĥ ′

bip + F̂(â+
k,m,p, âk,m,p, b̂+

q,p, b̂q,p) (15)

whereĤ ′
bip represents the dominant part of the energy for the bipolaron system, and can be

written in the following form:

Ĥ ′
bip = Ĥ1D + Ĥ2D + VI (z1, z2, ρ) (16)
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Figure 2. Plots of the bulk-LO-phonon-induced potentialV
1,1
IB (ρ/a), with l1 = l2 = 1, against

the relative positionρ/a of two holes projected onto thexy-plane.

in which

Ĥ1D = − h̄2

2m1
∇2

z1
− h̄2

2m2
∇2

z2
+ V1(z1) + V2(z2) (17)

Ĥ2D = − h̄2

2µ
∇2

ρ (18)

VI (z1, z2, ρ) = V 0
I (z1) + V 0

I (z2) + V ′
I (z1, z2, ρ) + e2

ε∞
√

ρ2 + (z1 − z2)2
. (19)

The function F̂(â+
k,m,p, âk,m,p, b̂+

q,p, b̂q,p), has an extremely complex form. In an
approximation, we can neglect the interaction between virtual phonons with different wave
vectors emitted by the recoiling bipolaron. The functionF̂(â+

k,m,p, âk,m,p, b̂+
q,p, b̂q,p) may

have a value of order much less than that of the dominant part stated previously. Recalling
the unperturbed Hamiltonian̂H1D on the R.H.S. of equation (16), its eigenvalue is given
by E1D

l1l2
which can be expressed as

E1D
l1l2

= π2h̄2l2
1

2m1d2
+ π2h̄2l2

2

2m2d2
(20)
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where the quantum numbersl1, l2 = 1, 2, . . ., and the corresponding wavefunction is [14]

φ1D(z1, z2) =


√

2/d sin(l1(z1 + 0.5d)π/d)
√

2/d sin(l2(z2 + 0.5d)π/d)

when 0< |z1|, |z2| < d/2

0 otherwise.

(21)

Note that in the solution of the wavefunction, we have considered the phase difference
due to the boundary of the infinite quantum well, namelyφ = liπ/2, wherei = 1 or
2. Furthermore, the orthonormal wavefunction which corresponds to the two-dimensional
motion in thexy-plane is assumed to beφ2D(ρ).

Figure 3. Plots of the SO-phonon-induced potentialV
1,1
IS (ρ/a), with l1 = l2 = 1, against the

relative positionρ/a of two holes projected onto thexy-plane.

The dominant part of the energy for the bipolaron system is determined by equation (16).
The first two terms of this energy represent the unperturbed Hamiltonian; they correspond to
the kinetic energies due to the one-dimensional (along thez-axis) and the two-dimensional
(on thexy-plane) motions of the two free electrons or holes, and also surplus energies due
to the potential wells. Overall, equation (17) represents the total energy of the two electrons
or holes that move in the potential wells. From equation (19) we note that the interaction
potentialVI (z1, z2, ρ) is induced by the phonon acting on the bipolaron; it can be divided
into three parts. The first part includesV 0

I (z1) and V 0
I (z2) which depend onz1 and z2

respectively. The second part isV ′
I (z1, z2, ρ) which depends not only onz1 andz2, but also
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Figure 4. Plots of the total phonon-induced potentialV
1,1
I (ρ/a), with l1 = l2 = 1, against the

relative positionρ/a of two holes projected onto thexy-plane.

on the coordinateρ that represents the distance between the two electrons or holes projected
onto thexy-plane. This part of interaction is in fact contributed by the bulk longitudinal
optical phonon,V ′

IB(z1, z2, ρ), and the surface optical phononV ′
IS(z1, z2, ρ):

V ′
I (z1, z2, ρ) = V ′

IB(z1, z2, ρ) + V ′
IS(z1, z2, ρ) (22)

where

V ′
IB(z1, z2, ρ) = −8

αh̄ωLOul

d

[ ∑
m=1,3,...

cos
[mπ

d
z1

]
cos

[mπ

d
z2

]
+

∑
m=2,4,...

sin
[mπ

d
z1

]
× sin

[mπ

d
z2

]]
×

∫ ∞

0

[
1 + Ms1s2k

2

µ(k2 + u2
l )

]
kJ0(ρk)

(k2 + u2
l )[k

2 + [mπ/d]2
dk (23a)

V ′
IS(z1, z2, ρ) = −4αh̄ωLOulε

3/2
∞ ε

1/2
0

∫ ∞

0
sinh(qd)e−qdq2J0(ρq)

×
[

cosh(qz1) cosh(qz2)

ε1(q) cosh2(qd/2)

(
1

q2(q2 + u2
s+)

+ Ms1s2

µ(q2 + u2
s+)2

)
+ sinh(qz1) sinh(qz2)

ε2(q) sinh2(qd/2)

(
1

q2(q2 + u2
s−)

+ Ms1s2

µ(q2 + u2
s−)2

)]
dq (23b)
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in which J0(ρk) andJ0(ρq) are the zero-order Bessel functions, and

ε1(q) = [ε∞ + 1 − (ε∞ − 1)e−qd ]3/2[ε0 + 1 − (ε0 − 1)e−qd ]1/2

ε2(q) = [ε∞ + 1 + (ε∞ − 1)e−qd ]3/2[ε0 + 1 + (ε0 − 1)e−qd ]1/2.
(24)

The last term in equation (19), i.e.Vcoul(z1, z2, ρ), is the Coulombic interaction potential
describing the interaction between the two electrons or holes. Summarizing the above
results, we can write the eigenfunction for any quantum numbersl1 and l2 as a product of
|φ1D(z1, z2, ρ)〉 and |0〉, i.e.

|8̄(z1, z2, ρ)〉 = |φ1D(z1, z2)φ2D(ρ)〉|0〉. (25)

In this paper, we concentrate on the calculation for the total effective potential energy, which
consists of the phonon-induced potential and Coulombic interaction energies, so we mainly
give computational results for that effective-potential energy as functions of the relative
position of two holes projected onto thexy-plane. This energy represents the contribution
for the stability of pairing between holes in the ceramic superconductor when they are
attractive. The first-order perturbation of this interaction energy for the system is given by

E′ = 〈8̄(z1, z2, ρ)|V ′
I (z1, z2, ρ) + Vcoul(z1, z2, ρ)||8̄(z1, z2, ρ)〉

= 〈φ2D(ρ)|V l1,l2
IB (ρ) + V

l1,l2
IS (ρ) + V

l1,l2
coul (ρ)|φ2D(ρ)〉 (26)

where

V
l1,l2
IB (ρ) = 〈φ1D(z1, z2)|V ′

IB(z1, z2, ρ)|φ1D(z1, z2)〉

= − 32
αh̄ωLOul

d3

∫ d/2

−d/2

∫ d/2

−d/2
sin2

[
l1π

d

(
z1 + 1

2
d

)]
sin2

[
l2π

d

(
z2 + 1

2
d

)]
×

[ ∑
m=1,3,...

cos
[mπ

d
z1

]
cos

[mπ

d
z2

]
+

∑
m=2,4,...

sin
[mπ

d
z1

]
sin

[mπ

d
z2

]]

×
∫ ∞

0

[
1 + Ms1s2k

2

µ(k2 + u2
l )

]
kJ0(ρk)

(k2 + u2
l )[k

2 + [mπ/d]2]
dk dz1 dz2 (27)

V
l1,l2
IS (ρ) = 〈φ1D(z1, z2)|V ′

IS(z1, z2, ρ)|φ1D(z1, z2)〉

= − 16
αh̄ωLOulε

3/2
∞ ε

1/2
0

d2

×
∫ d/2

−d/2

∫ d/2

−d/2
sin2

[
l1π

d

(
z1 + 1

2
d

)]
sin2

[
l2π

d

(
z2 + 1

2
d

)]∫ ∞

0
sinh(qd)

×e−qdq2J0(ρq)

[
cosh(qz1) cosh(qz2)

ε1(q) cosh2(qd/2)

(
1

q2(q2 + u2
s+)

+ Ms1s2

µ(q2 + u2
s+)2

)
+sinh(qz1) sinh(qz2)

ε2(q) sinh2(qd/2)

(
1

q2(q2 + u2
s−)

+ Ms1s2

µ(q2 + u2
s−)2

)]
dq dz1 dz2 (28)

and the repulsive Coulombic potential is given by

V
l1,l2
coul (ρ) = 〈φ1D(z1, z2)| e2

ε∞[ρ2 + (z1 + z2)2]1/2
|φ1D(z1, z2)〉

= 4e2

d2ε∞

∫ d/2

−d/2

∫ d/2

−d/2

1

[ρ2 + (z1 − z2)2]1/2
sin2

[
l1π

d

(
z1 + 1

2
d

)]
× sin2

[
l2π

d

(
z2 + 1

2
d

)]
dz1 dz2 (29)
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whereV
l1,l2
IB (ρ) andV

l1,l2
IS (ρ) are the induced attractive potentials for the Cooper pair which

is composed of two interacting electrons or holes mediated by the LO phonon and the SO
phonon respectively, andV l1,l2

coul (ρ) is the repulsive Coulombic potential energy,ρ being the
average distance between the two electrons or holes. In the following section, we shall
briefly discuss and reach conclusions regarding our results based on the equations (27), (28)
and (29).

3. Discussion and conclusions

In this section, we take the superconducting material, YBCO, as the subject of our study,
and use it to demonstrate the results of our numerical calculations. We regard the two holes
as the conducting carriers, having masses ofm1 = m2 = mh, and make use of the more
demanding condition of the ions within the crystal having a sufficiently large displaceability
that a large bipolaron will result from two holes that have a certain separationρ and bind
with each other to form a bound state. Note that for this condition we haveε0 > 2ε∞
[8]. Furthermore, we setε∞ = 35 andε0 = 150. The lattice parameters for YBCO are
a = 3.82 Å, b = 3.88 Å, c = 11.69 Å. The parameters used in our calculation are listed in
table 1. First of all, on the basis of equations (27) and (28), the bulk LO-phonon- and the
SO-phonon-induced potentials withl1 = l2 = 1 are calculated for various values ofρ/a,
whereρ represents the relative position of the two holes projected onto thexy-plane anda
is the lattice parameter on thea-axis of the YBCO crystal unit cell, i.e.a = 3.82 Å. The
option for adopting this lattice parametera is based on the fact that the bipolaron is formed
preferentially along thea-axis (or x-axis), and it will be relatively free to move on the
xy-plane throughout the crystal space. The thicknessd of the potential well can be taken
along the direction of thec-axis of the YBCO crystal. By settingd = Nc, with c = 11.64 Å
for the polar slab, we may plot the functions ofV

1,1
IB (ρ/a) andV

1,1
IS (ρ/a) againstρ/a with

fixed values ofN for individual curves (figures 2 and 3). In these figures, it is clearly
shown that the induced LO-mode and SO-mode potentials both decrease with increasing
relative distance between the holes. These plots are traced out with certain values ofN that
represent the numbers of unit cells along thec-axis (orz-axis). Furthermore, as can be seen
from these figures, the thicker the polar slab, the larger the magnitude of the LO-induced
potential. However, for the case of the SO-induced potential, the opposite result is obtained,
i.e. the thicker the polar slab, the smaller the magnitude of the SO-induced potential. This
can be seen from equation (1): there is a decaying factor, e−qd/2, which makes the SO-
induced potential drop rapidly. So the hole–SO-phonon coupling is very strong only near
the surface of the polar slab. For an extremely thin polar slab, the SO-mode effect is
not negligible. The total attractive phonon-induced potential including both the LO mode
and the SO mode is plotted in figure 4. It is obvious that when the thickness of the slab
decreases, the magnitude of the total phonon-induced potential increases more rapidly for
a fixed relative distance between the two holes. Note that the effect for the total induced
potential is dominated by the contribution due to the SO mode for our case of a thin polar
slab. In figure 5, the repulsive Coulombic potential is plotted againstρ. In general, the
Coulombic potential is not dependent on the thickness of the slab, except that the two holes
are much closer together, i.e.ρ/a < 30.00. We should not neglect the effect of so large a
Coulombic repulsion potential.

The sum of the LO-mode- and SO-mode-induced potentials and the Coulombic potential
will represent the effective interaction energy of the trapped bipolaron in the infinite quantum
well. This effective interaction energy is a measure of the binding energy of the two holes in
the bipolaron. One of the most important factors for the stability of large-bipolaron formation
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Table 1. Parameters for the polar crystal of YBCO used for our calculations, wherem0 is the
free-electron mass.

α h̄ωLO (meV) ε∞ ε0 mh/m0 a (Å) b (Å) c (Å)

0.017 79.00 35 150 0.0037 3.82 3.88 11.64

Figure 5. Plots of the repulsive Coulombic potentialV
1,1
coul(ρ/a), with l1 = l2 = 1, against the

relative positionρ/a of two holes projected onto thexy-plane.

is determined by this effective interaction energy. Plots of this effective interaction energy
for different thicknesses are shown in figure 6. Since this effective interaction energy
involves the attractive phonon-induced potential and the repulsive Coulombic potential,
which are functions ofρ, it becomes positive whenρ is extremely small, i.e.ρ/a < 6. If
the effective potential is positive, the bipolaron will not be stable, since the two holes cannot
form a bound state. However, for a relatively thin polar slab, one may obtain a negative
effective potential for a bipolaron formation, with the equilibrium distance at the minimum
of the effective interaction energy for these two holes. Note that in equation (29) the
repulsive Coulombic potential is shielded by the optical dielectric constant,ε∞. The larger
the optical dielectric constant, the smaller the Coulombic repulsion. This, in turn, makes
the effective potential energy more negative. This may stimulate experimental research into
the temperature dependence of the optical dielectric constant, especially at low temperature.



Phonon-induced potentials 3205

It may also provide a useful clue to how to find the origin of the high critical temperature
in ceramic superconductors.

Figure 6. Plots of the total effective potential energyV
1,1
coul(ρ/a)+V

1,1
I (ρ/a), with l1 = l2 = 1,

against the relative positionρ/a of two holes projected onto thexy-plane.

In conclusion, we have investigated the effect of both the LO mode and the SO mode
on the binding energy of the bipolaron in a polar slab. It is worth noting that the effect
of the SO mode and that of the Coulombic potential are competitive in the process of
formation of the bipolaron. There is a size effect due to the thickness of the polar slab,
which plays an important role in the formation of a stable bipolaron. The equilibrium
distance between the two holes that correspond to the bipolaron can be determined from the
effective potential energy. It can be seen from figure 6 that the effective potential energy of
the interaction between the two holes in a relatively thin polar slab of YBCO has a distinct
equilibrium position at its minimum. The magnitude of the binding energy of these two
holes becomes larger as the bipolaron size, taken as the equilibrium distance between the
holes becomes smaller. The pairing of such holes will probably make some contribution to
the high-temperature superconductivity.
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